Intracellular trafficking of the KV1.3 potassium channel is regulated by the prodomain of a matrix metalloprotease.
نویسندگان
چکیده
Matrix metalloproteases (MMPs) are endopeptidases that regulate diverse biological processes. Synthesized as zymogens, MMPs become active after removal of their prodomains. Much is known about the metalloprotease activity of these enzymes, but noncanonical functions are poorly defined, and functions of the prodomains have been largely ignored. Here we report a novel metalloprotease-independent, channel-modulating function for the prodomain of MMP23 (MMP23-PD). Whole-cell patch clamping and confocal microscopy, coupled with deletion analysis, demonstrate that MMP23-PD suppresses the voltage-gated potassium channel KV1.3, but not the closely related KV1.2 channel, by trapping the channel intracellularly. Studies with KV1.2-1.3 chimeras suggest that MMP23-PD requires the presence of the KV1.3 region from the S5 trans-membrane segment to the C terminus to modulate KV1.3 channel function. NMR studies of MMP23-PD reveal a single, kinked trans-membrane α-helix, joined by a short linker to a juxtamembrane α-helix, which is associated with the surface of the membrane and protected from exchange with the solvent. The topological similarity of MMP23-PD to KCNE1, KCNE2, and KCNE4 proteins that trap KV1.3, KV1.4, KV3.3, and KV3.4 channels early in the secretory pathway suggests a shared mechanism of channel regulation. MMP23 and KV1.3 expression is enhanced and overlapping in colorectal cancers where the interaction of the two proteins could affect cell function.
منابع مشابه
Voltage-gated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca2+-dependent mechanism.
Kv1.3 is a voltage-gated K(+) channel expressed in insulin-sensitive tissues. We previously showed that gene inactivation or pharmacological inhibition of Kv1.3 channel activity increased peripheral insulin sensitivity independently of body weight by augmenting the amount of GLUT4 at the plasma membrane. In the present study, we further examined the effect Kv1.3 on GLUT4 trafficking and tested ...
متن کاملVoltage-gated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca -dependent mechanism
Li, Yanyan, Peili Wang, Jianchao Xu, and Gary V. Desir. Voltagegated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca -dependent mechanism. Am J Physiol Cell Physiol 290: C345–C351, 2006; doi:10.1152/ajpcell.00091.2005.— Kv1.3 is a voltage-gated K channel expressed in insulin-sensitive tissues. We previously showed that gene inactivation or pharmacological inh...
متن کاملRab11 in Disease Progression
Membrane/ protein trafficking in the secretory/ biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular sig...
متن کاملKCNE4 suppresses Kv1.3 currents by modulating trafficking, surface expression and channel gating.
Voltage-dependent potassium channels (Kv) play a crucial role in the activation and proliferation of leukocytes. Kv channels are either homo- or hetero-oligomers. This composition modulates their surface expression and serves as a mechanism for regulating channel activity. Kv channel interaction with accessory subunits provides mechanisms for channels to respond to stimuli beyond changes in mem...
متن کاملEvidences on the existence of a new potassium channel in the rough endoplasmic reticulum (RER) of rat hepatocytes
Introduction: we have recently reported the presence of two potassium currents with 598 and 368 pS conductance in the rough endoplasmic reticulum (RER) membrane. The 598 pS channel was voltage dependent and ATP sensitive. However, the 368 pS channel was rarely observed and its identity remained obscure. Since cationic channels in intracellular organelles such as mitochondria and RER play imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 288 9 شماره
صفحات -
تاریخ انتشار 2013